Cerebral perturbations provoked by prolonged exercise.

نویسندگان

  • Lars Nybo
  • Niels H Secher
چکیده

This review addresses cerebral metabolic and neurohumoral alterations during prolonged exercise in humans with special focus on associations with fatigue. Global energy turnover in the brain is unaltered by the transition from rest to moderately intense exercise, apparently because exercise-induced activation of some brain regions including cortical motor areas is compensated for by reduced activity in other regions of the brain. However, strenuous exercise is associated with cerebral metabolic and neurohumoral alterations that may relate to central fatigue. Fatigue should be acknowledged as a complex phenomenon influenced by both peripheral and central factors. However, failure to drive the motorneurons adequately as a consequence of neurophysiological alterations seems to play a dominant role under some circumstances. During exercise with hyperthermia excessive accumulation of heat in the brain due to impeded heat removal by the cerebral circulation may elevate the brain temperature to >40 degrees C and impair the ability to sustain maximal motor activation. Also, when prolonged exercise results in hypoglycaemia, perceived exertion increases at the same time as the cerebral glucose uptake becomes low, and centrally mediated fatigue appears to arise as the cerebral energy turnover becomes restricted by the availability of substrates for the brain. Changes in serotonergic activity, inhibitory feed-back from the exercising muscles, elevated ammonia levels, and alterations in regional dopaminergic activity may also contribute to the impaired voluntary activation of the motorneurons after prolonged and strenuous exercise. Furthermore, central fatigue may involve depletion of cerebral glycogen stores, as signified by the observation that following exhaustive exercise the cerebral glucose uptake increases out of proportion to that of oxygen. In summary, prolonged exercise may induce homeostatic disturbances within the central nervous system (CNS) that subsequently attenuates motor activation. Therefore, strenuous exercise is a challenge not only to the cardiorespiratory and locomotive systems but also to the brain.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Cerebral blood flow and metabolism during exercise: implications for fatigue.

During exercise: the Kety-Schmidt-determined cerebral blood flow (CBF) does not change because the jugular vein is collapsed in the upright position. In contrast, when CBF is evaluated by (133)Xe clearance, by flow in the internal carotid artery, or by flow velocity in basal cerebral arteries, a approximately 25% increase is detected with a parallel increase in metabolism. During activation, an...

متن کامل

Cerebral perturbations during exercise in hypoxia.

Reduction of aerobic exercise performance observed under hypoxic conditions is mainly attributed to altered muscle metabolism due to impaired O(2) delivery. It has been recently proposed that hypoxia-induced cerebral perturbations may also contribute to exercise performance limitation. A significant reduction in cerebral oxygenation during whole body exercise has been reported in hypoxia compar...

متن کامل

Invited Review HIGHLIGHTED TOPIC Fatigue Mechanisms Determining Exercise Performance Cerebral blood flow and metabolism during exercise: implications for fatigue

Secher NH, Seifert T, Van Lieshout JJ. Cerebral blood flow and metabolism during exercise, implications for fatigue. J Appl Physiol 104: 306–314, 2008. First published October 25, 2007; doi:10.1152/japplphysiol.00853.2007.—During exercise: the Kety-Schmidt-determined cerebral blood flow (CBF) does not change because the jugular vein is collapsed in the upright position. In contrast, when CBF is...

متن کامل

Familial paroxysmal dystonia induced by exercise.

A mother and daughter are described with paroxysmal dystonia induced by exercise. As has been reported in one previous family, the attacks were provoked in the lower limbs by prolonged exertion but not by sudden movements. It was also found that involuntary movements could be induced focally in any limb either by local exercise or by sensory stimulation restricted to that limb.

متن کامل

Neuroprotective Effects of Exercise on Brain Edema and Neurological Movement Disorders Following the Cerebral Ischemia and Reperfusion in Rats

Introduction: Cerebral ischemia and reperfusion causes physiological and biochemical changes in the neuronal cells that will eventually lead to cell damage. Evidence indicates that exercise reduces the ischemia and reperfusion-induced brain damages in animal models of stroke. In the present study, the effect of exercise preconditioning on brain edema and neurological movement disorders followin...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Progress in neurobiology

دوره 72 4  شماره 

صفحات  -

تاریخ انتشار 2004